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Abstract Multi-core based systems are ubiquitous in data centers. Efficient exploi-
tation of hardware parallelism supported by such systems is imperative on multiple
fronts: minimizing latency and power consumption and maximizing throughput. This
in turn calls for advanced program analysis and optimization. Call graphs have been
long used to this end. Although several static call graph extraction techniques have
been proposed in the past, these techniques cannot be applied to analyze programs
already running in production. Likewise, the existing dynamic call graph extraction
tools have limited use in production owing to, say (but not limited to), lack of support
for capturing wall clock time spent in functions of a given program and lack of means
to analyze the call graph information captured at run time. In this paper, we present
a Pin-based dynamic call graph extraction framework called Trin-Trin. The frame-
work enables extraction of complete, precise and dynamic call graphs. Additionally,
the framework can be used seamlessly with already running applications. Furthermore,
an analytics engine is provided to facilitate advanced program analysis, e.g., different
multithreading context(s) of any function can be extracted in a demand-driven fash-
ion. We evaluate the overhead of Trin-Trin using several Unix utilities, applications
from the industry-standard SPEC CINT2006, CFP2006 benchmark suite and Yahoo!
properties. Additionally, we present a case study to illustrate how Trin-Trin can be
used to analyze performance bottlenecks and performance regressions.

Keywords Performance · Profiling · Call Graphs · Analytics · Multithreading ·
Multi-cores

R. Jalan · A. Kejariwal (B)
Yahoo! Inc., Sunnyvale, CA, USA
e-mail: arun_kejariwal@acm.org

123



www.manaraa.com

Int J Parallel Prog (2012) 40:410–442 411

1 Introduction

Low latency is one of the key metrics associated with user experience in the Internet
space. From a corporate standpoint, it is equally critical to serve a large audience
(i.e., support high throughput) as it directly relates to the bottomline. Achieving the
aforementioned dual objectives involves a multi-level process. One of the steps in
this regard is program optimization. For example, let us consider the online property
Yahoo! Finance (websites such as Yahoo! Finance, Yahoo! Sports are referred to as
the different properties of Yahoo!). Optimizing the property for lower latency directly
relates to better user experience.

Program optimization has been a subject of research for over four decades [1,32].
Several static and dynamic program optimization approaches have been proposed. In
most approaches, construction of precise whole program call graphs [2,7,24,29,49] is
required. Call graphs have been used to guide interprocedural optimization [5], guide
the replacement of dynamically dispatched function calls with direct method calls,
guide function inlining et cetera. Further, call graphs have been used in reverse engi-
neering of software systems [10,11]. Additionally, it has been shown that call graph
construction has ramifications on the precision of termination checking [50].

Several static call graph extraction approaches have been proposed. The precise-
ness of these approaches is limited owing to, say, the use of function pointers, indirect
referencing. This in turn limits guiding, say, function inlining and interprocedural
optimization. Further, by definition, these approaches do not shed any light on the
coverage—defined as the percentage of the run time—of a given function. To this end,
commercial and open source dynamic call graph extractors such as Intel’s vtss-
run [27], Callgrind [8] and Gprof [19] have been developed. Function coverage
reported by the existing tools is based on CPU cycles instead of the wall clock time/run
time. Consequently, the percentage of run time spent in kernel space by applications
routines cannot be quantified via these tools (e.g., on 32-bit platforms, the amount run
time spent in the kernel space can be approximated by the coverage of the _dl_sys-
info_int80 routine1). This can be severely limiting in context of multithreaded and
I/O intensive applications wherein a large part of a program’s run time may be spent
in the kernel space. We overview existing static and dynamic call graph extraction
approaches in Sect. 6.

To address the above limitations, we present Trin-Trin—a framework to extract
complete, precise and dynamic call graphs. In the current context, completeness sig-
nifies that Trin-Trin also captures the run time spent in the kernel space. For this,
Trin-Trin measures processor cycles (using the rdtsc instruction) for each thread.
The time spent by a thread in the kernel space can be approximated by summing the run
times of routines that are known to context switch into the kernel. This can potentially
be of help to characterize the multithreaded execution behavior of industry-standard
benchmarks such as SPEC OMP2001 [58] and to assess the efficacy of different thread
synchronization strategies. Preciseness signifies that, in contrast to static call graph
extractors, no approximations are made with respect to caller–callee relationships.

1 The routine _dl_sysinfo_int80 taps into the kernel to invoke system services.
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Lastly, dynamic signifies that the extracted call graph corresponds to the program flow
at run time; in other words, functions that are not called at run time do not feature in the
extracted call graph. Trin-Trin can also capture the calls to functions in the dynamic
linker. Trin-Trin is based on Intel’s Pin dynamic instrumentation system [31]. We
have been using Trin-Trin to analyze the run time performance of multiple Yahoo!
properties such as the Y! search engine and the advertising platform.

The main contributions of the paper are as follows:

• First, we present a framework—Trin-Trin—to extract complete, precise and
dynamic call graphs. Trin-Trin can be used not only for sequential, but also
for multithreaded as well as multi-process applications. In the case of a multi-pro-
cess application, Trin-Trin generates a separate call graph for each process. A
key highlight of Trin-Trin is that it can be used to extract call graphs of already
running applications. This is of particular importance as applications in produc-
tion cannot be restarted frequently. A pid-based attachment/detachment mode is
supported in Trin-Trin for the above. The design and features of Trin-Trin are
detailed in Sect. 3.

• Second, we present an analytics engine to assist a developer and/or a performance
engineer with advanced program and performance analysis. The analytics engine
can be used to determine, for example, hottest path in a call graph, existence of
cycles in a call graph, depth of recursion, levels of multithreading, the number
of multithreaded contexts a function was called in et cetera. The analytics engine
supports graphical visualization, using the open source dot format [20], of the
extracted call graphs. All the call graph illustrations presented in the rest of the
paper were generated using the analytics engine. Note that the analytics engine is
run post-collection of the call graph profile data. Thus, the analytic engine does
not introduce any run time overhead. The analytic engine is discussed in detail in
Sect. 4.

• Third, we evaluate the overhead of Trin-Trin using several Unix utilities such as
find, applications from the industry-standard SPEC CINT2006 [57], CFP2006
[56] benchmark suite.

• Fourth, we present a case study to illustrate how Trin-Trin can be used to analyze
performance bottlenecks and performance regressions.

The rest of the paper is organized as follows: Sect. 2 introduces the terminology
used in the rest of the paper. Section 3 details the design on Trin-Trin. Section 4
presents the analytics engine. Experimental results—run time overhead of Trin-Trin
and illustration of its use in program optimization—are presented in Sect. 5. Previous
work is discussed in Sect. 6. Finally, in Sect. 7, we conclude with directions for future
work.

2 Terminology

In this section, we introduce the terminology used in the rest of the paper. A call graph
G(V, E) is a directed graph where V is a finite set of nodes and E is a binary relation
on V . Given two nodes u, v with an edge between them u → v, we say that u is the
source and v is the sink.
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void foo(int level, int delay) {
    if (level == 1)      { sleep(delay); bar(1, delay); }
    else if (level == 2) { sleep(delay); toy(1, delay); }
    else                 { sleep(delay); toy(2, delay); }
}
void bar(int level, int delay) {
    if (level == 1)      { sleep(delay); foo(2, delay); }
    else if (level == 2) { sleep(delay); foo(3, delay); }
    else                 { sleep(delay); toy(3, delay); }
}
void toy(int level, int delay) {
    if (level == 1)      { sleep(delay); bar(2, delay); }
    else if (level == 2) { sleep(delay); bar(3, delay); }
    else { sleep(delay); }
}
int main(int argc, char **argv) 
{
    foo (1, 1); return 0;
}

Fig. 1 Example program

Definition 1 A path from a node u to a node v in a call graph G(V, E) is a sequence
of nodes 〈n0, n1, . . . , nk〉 such that u = n0, v = nk and (ni−1, ni ) ∈ E for i =
1, 2, . . . , k.

Definition 2 In a call graph G(V, E), a path 〈n0, n1, . . . , nk〉 forms a cycle if n0 = nk

and the path contains at least one edge. The cycle is simple if n0, n1, . . . , nk are dis-
tinct, else the cycle is referred to as a complex cycle. A self-loop is a simple cycle
with only one node.

Note that existence of simple/complex cycle(s) in a call graph signifies the use of
recursion in the corresponding program. Let us consider the example program shown
in Fig. 1.

Figure 2a shows a partial call graph—with the function sleep and its callees—of
the example program shown in Fig. 1. From the call graph we note that there are two
intermediate nodes starting with ‘__’ between sleep and the leaf nodes. Typically,
such nodes have low coverage (defined as the percentage of overall run time) and
hence, are filtered from the graph. However, removal of these nodes orphans the leaf
nodes, as shown in Fig. 2b. To this end, we introduce dfa edges to connect the leaf
nodes with sleep, as shown in Fig. 2c. Formally, a dfa edge is defines as follows:

Definition 3 A dfa(n) edge u → v represents a path between the nodes u and v, n
denotes the number of edges between the source and the sink of the dfa edge. dfa
stands for ‘distance from ancestor’.

The different scenarios in which dfa edges are drawn are discussed in Sect. 4.

3 Trin-Trin: Design and Implementation

Broadly, the design of Trin-Trin has been guided by the following objectives:

• Assist performance engineers in identifying performance bottlenecks which have
the most bang-for-the-buck. In this regard, Trin-Trin addresses the following:
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ld−linux.so.2:_dl_sysinfo_int80

[sleep]

libc.so.6:memset libc.so.6:__nanosleep libc.so.6:__GI___sigaction

libc.so.6:memcpy

(a)

ld−linux.so.2:_dl_sysinfo_int80

[sleep]

libc.so.6:memset

libc.so.6:memcpy

(b)

ld−linux.so.2:_dl_sysinfo_int80

[sleep]

dfa(2)

libc.so.6:memset libc.so.6:memcpy

dfa(2)

(c)

Fig. 2 Illustrating the use of the dfa edges

– What is the coverage, defined as the percentage of the run time, of each func-
tion—on a per-thread basis—in a given application?

– What percentage of the run time is spent by an application sleeping, waiting
or executing particular system calls?

– What is the relative contribution of specific functions to a latency sensitive
path in an application?

– What are the benefits/drawbacks associated with a particular I/O or computa-
tion strategy?

• Guide program optimization and selection of compiler optimizations. For exam-
ple, Trin-Trin can be used to guide, by leveraging the context information, how
many helper threads [63] should be spawned.

Trin-Trin has been engineered to be portable across 32 and 64-bit x86 platforms and it
leverages Pin toolkit capabilities to allow seamless profiling of 32-bit binaries running
in a 64-bit environment.

Figure 3 shows the integration of Trin-Trin with Pin. As shown in the figure, there
are 5 modules in Trin-Trin. Each module interacts with Pin by calling, as needed, the
Pin APIs. In the rest of this section, we detail each module of Trin-Trin.

3.1 Shared Library and Routine Filter

Modern software architecture paradigms advocate splitting code into smaller reusable
functions. Thus, real-life programs such as Y! properties consist of a large number of
functions. The above, in the context of extraction of dynamic call graphs, leads to the
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Fig. 3 Trin-Trin’s integration
with Pin
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Fig. 4 403.gcc function
coverage profile

following twofold problems: (a) high run time overheads and (b) dynamic call graphs
that are difficult to analyze owing to a large number of nodes.

The aforementioned problems can be mitigated during call graph analysis by fil-
tering nodes and/or edges in the call graph based on their coverages. The Analytics
Engine (discussed in Sect. 4) supports selection of, via use of function and/or library
name regular expressions, a subset of profiled nodes to be included in the final dynamic
call graph. However, this does not address the high extraction overhead problem which
can be significant for certain classes of applications.

For example, the function coverage profile of403.gcc—a benchmark in the indus-
try-standard SPEC CINT2006 suite [57]—is shown in Fig. 4. The coverage profile was
obtained via Trin-Trin while running 403.gcc on a real machine (see Table 2) with
the reference data set. From the figure we note that the run time is primarily distributed
among 750 functions (from a total of 2,000 functions executed at run time). Plotting a
call graph for 403.gcc will lead to >1,000 nodes in the call graph having very low
coverages and the resultant call graph would not be amenable to program analysis.
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Likewise, the 483.xalancbmk benchmark [57] which executes over 10B (!)
dynamic calls when run with the reference data set. High dynamic call counts result
in high run time overheads while extracting dynamic call graphs.

In some scenarios such as mapping interaction between two logical components of
an application or profiling I/O behavior of an application et cetera, it may be beneficial
to generate call graphs for specific parts of a given application.

To this end, Trin-Trin enables profiling of calls originating from a set of pre-
selected functions. This feature has been provided in the form of a regular expression
filter that is applied to names of routines containing the call when inserting analy-
sis call backs. By default, Trin-Trin uses the ‘*’ filter which profiles all calls in an
application.

The filtering feature described above is very useful for limiting call graph extrac-
tion overhead when profiling the behavior of high performance and latency sensitive
applications such as Y! Finance. In particular, to gauge the latency for a search request
on Y! Finance, filtering can be used so as to profile calls corresponding to the top level
search request method in a HTTP server application, thereby creating a relatively
lesser impact on run time performance.

3.2 Call Instrumentor

Extraction and analysis of dynamic call graphs necessitates tracing the call flow and
capturing the dynamic call metadata. The former involves detection and capture of
the call sequences. The latter entails capturing metadata such as (but not limited to)
call count and coverage on a per call basis. Trin-Trin’s modules Thread Tracker and
Process Tracker (discussed subsequently in this section) facilitate call flow tracing
and metadata capture of multithreaded and multi-process applications respectively.
Call flow tracing support is provided by instrumenting (selected) call instructions in
an application. As shown in Fig. 5, Trin-Trin inserts Pin’s analysis call backs before
and after the selected call instructions.

Fig. 5 Example call
instrumentation

00001000 <A>:
    1000:   b8 0a 00 00 00          mov    $0xa,%eax
    /* Trin−Trin PRE−CALL call back */
    1005:   ff 1d 0e 20 00 00       lcall  *0x200e
    /* Trin−Trin POST−CALL call back */
    100b:   5d                      pop    %ebp
    100c:   01 d8                   add    %ebx,%eax
    ...

0000200e <B>:
    200e:   83 c3 32                add    $0x32,%ebx
    2011:   ff 25 17 30 00 00       jmp    *0x3017
    ...

00003017 <C>:
    3017:   01 c3                   add    %eax,%ebx
    /* Trin−Trin PRE−CALL call back */
    3019:   ff 1d 20 40 00 00       lcall  *0x4020
    /* Trin−Trin POST−CALL call back */
    301f:   c3                      ret
    ...

00004020 <D>:
    4020:   89 c8                   mov    %ecx,%eax
    4022:   c3                      ret
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Instrumentation of call instructions is not trivial owing to the following two reasons.
First, during instruction analysis, the Pin API function INS_InsertCall can only
insert instrumentation before a call instruction. Second, Pin’s instruction analysis order
is not linear with respect to the instructions contained in an application binary; instead,
it is a function of the program flow. We address the first constraint by instrumenting
each call instruction with a IPOINT_BEFORE call back (in other words, with a pre-
call call back). As mandated by the Pin API, IPOINT_BEFORE, pre-call call back is
called before the call instruction is executed. Instructions occurring after the selected
call instruction are also instrumented with a corresponding IPOINT_BEFORE call
back. This call back serves as a complimentary post-call call back for the previously
inserted pre-call call back. The second constraint is addressed by tracking the insertion
of pre- and post-callbacks for each selected call instruction. This methodology allows
us to insert call instrumentation asynchronously. Specifically, it allows us to address
the situation where multiple pre-call call backs are inserted before their corresponding
post-call call backs are inserted.

Call metadata capture is carried out within the context of pre- and post-call call
backs. Currently, Trin-Trin tracks recursive and non-recursive edge call counts, func-
tion entry and exit timestamps and minimum and maximum call durations for each
traced function (refer to Fig. 7).

3.2.1 Handling Call Source Addresses

By design, Trin-Trin uses the destination address of the last call as the source address
of the next call during flow tracing. This is done to avoid creating unconnected nodes
in the call graph. Consider the example given in Fig. 5. From the figure we note
that function A located at address 0x1000 calls function B from position 0x1005. B
located at address 0x200e then jumps to procedure C from position 0x2011. C located
at 0x3017 calls the function D from position 0x3019 and then returns to its caller. If
we trace the call edges using actual source addresses the call sequence is A → B, C
→ D and the resultant call graph is shown in Fig. 6a.

Unlike Trin-Trin, a näive strategy of using unadjusted call source and destination
addresses results in a large number of top-level (unconnected) nodes in a dynamic
call graph. This has direct implications on call graph analysis. Trin-Trin produces the
following call sequence: A → B → D; the resulting call graph is shown in Fig. 6b.

In general, tracing ‘JMP’ instructions in applications is not a viable option due
to its to dramatic impact on run time overhead. Therefore, we decided to adopt the

Fig. 6 Sample call graphs for
example presented in Fig. 5

A

B
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D

(a)

A

B

D

(b)
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typedef struct edge_stat {        typedef struct rcr_nodeinfo {
  edge_t es_edge;                   /* current recursion level of node */
  uint64_t es_total_duration;       int rcr_cur_level; 
  uint64_t es_max_duration;         /* occurrence count of node */ 
  uint64_t es_min_duration;         int rcr_cur_ecount;
  uint64_t es_count;                /* pointer to last occurrence */
  uint64_t es_rcr_count;            int rcr_last_idx;
  rcr_nodeinfo_t *es_rcr;           ...
  ...

Fig. 7 Metrics tracked by Trin-Trin

approach mentioned above. Note that this approach does not require mapping of call
source address to the entry point of functions in which they are contained. For exam-
ple, to produce a correct call graph, we need not explicitly translate the source address
of the call at 0x1005 to the address of function A (0x1000).

3.2.2 Handling Recursion

Trin-Trin’s analysis call backs are designed to detect recursion during program exe-
cution. Broadly, we classify recursive execution into two classes: (a) Self Recursion
corresponds to the case when there exists at least one simple cycle with only one node
and (b) Indirect Recursion corresponds to the case when there exists at least one
simple/complex cycles with two or more nodes.

Trin-Trin records recursion information on a per node basis (refer to Fig. 7). Spe-
cifically, for each node, there are two metrics associated with recursion—‘Call Stack
Back Edge Count’ and ‘Call Stack Node Occurrence Count’. Back edge count is used
to calculate the recursion level of a thread; its default value is 0 and is incremented
every time a recursive call is made. Node occurrence count also has a default value
of 0 and is incremented each time a particular function is invoked. A node occurrence
count value greater than one at any recursion level signifies the start of a new recursive
call.

Support for detecting recursion at run time has an adverse effect on call metadata
capture overhead. Hence, recursion detection is made configurable via a compile-time
option in Trin-Trin. Contemporary call graph tools do not provide such a feature. For
example, Callgrind [8] avoids this problem by stripping cyclic paths from generated
call graphs, thereby resulting in incomplete call graphs for recursive programs.

3.3 Thread Tracker

Trin-Trin supports extraction of dynamic call graph of multi-threaded applications.
At run time, for each thread, the call information is stored in memory dedicated to a
given thread. This reduces, in some cases eliminates, the need of locking call metadata
capture data structures across threads. The above strategy also helps in avoiding false
cache-line-sharing between threads. At first, call graphs are produced on a per-thread
basis, thereby facilitating analysis of per-thread call graphs in isolation, if required. The
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per-thread call graphs are subsequently “merged” together by the Analytics Engine
(discussed in the next section).

Along with monitoring Pin’s thread-specific callbacks, Trin-Trin also detects and
monitors thread creation functions such as pthread_create et cetera. This is done
via a simple routine name matching algorithm which is triggered during Pin’s static
routine analysis phase (viz., Routine Analysis Call Back). Information gathered from
these three types of call backs is used to relate threads to each other via the parent-child
relationship and to detect thread creation points in a program.

3.4 Process Tracker

The process tracker module is responsible for tracking child processes. Multi-process
applications start as a single process and subsequently spawn new processes using
the ‘fork()’ Unix system call. Trin-Trin registers call backs with Pin to track process
creation. When a new process is created, Trin-Trin re-initializes (resets) call account-
ing information for the new process. This is required to avoid double accounting of
parent process metrics in child process(es). Akin to the multithreaded case, Trin-Trin
generates individual call graphs for all threads in child processes.

3.5 Intermediate Call Graph Generation

Trin-Trin facilitates extraction of dynamic call graphs at arbitrary points during pro-
gram execution. The intermediate call graphs filenames are suffixed with a version
counter that is incremented each time a call graph is generated. The Analytics Engine
(discussed in Sect. 4) is capable of recognizing this versioning scheme and it performs
analysis on different versions separately. At present we do not correlate data between
different versions and each version is analyzed in isolation.

Providing support for generation of intermediate call graphs results in a run time
situation in which dynamic call metadata is accessed simultaneously by the Intermedi-
ate Call Graph Generator and Call Instrumentor modules. To avoid corruption of the
dynamic call metadata, we introduced locking in our otherwise lock-less call analysis
strategy, thereby increasing the overhead of Trin-Trin. We decided to keep this as
the default behavior with the compile time option of disabling the aforementioned
locking, thereby avoiding the overhead.

The Intermediate Call Graph Generator module tracks signals, such as SIGUSR2,
sent to the application being profiled. Specifically, upon receipt of a particular signal
(a configurable parameter), Trin-Trin produces an intermediate call graph.

An important use case of the Intermediate Call Graph Generator module is the
extraction of dynamic call graphs of server applications such as the various Y! prop-
erties that run for indefinite durations as high availability is key to user experience.
Furthermore, the module is also useful in cases where the target application is known to
terminate abnormally after a certain duration. In such a scenario, the errant application
can be sent a signal to generate a call graph prior to its abnormal termination.
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Fig. 8 Analytics engine
pipeline
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3.5.1 Attach Mode

Based on Pin’s support for attaching to running processes, Trin-Trin supports profil-
ing of already running processes. Trin-Trin does not operate any differently in this
mode; however, the output call graphs may be different. For instance, the dynamic call
graph generated by the Analytics Engine may contain multiple top-level nodes, may
have missing thread-start-points. This can be attributed, in part, to (a) some events
may have occurred before Trin-Trin was attached to the application and (b) for pair
events, such as events corresponding to spawning of a child thread by a parent thread,
Trin-Trin may encounter only one event of the pair. Trin-Trin attempts to detect such
cases and extract best effort call graphs.

4 Analytics Engine

In this section, we present the Analytics Engine. The Analytics Engine is built using
Ocaml [60] and uses the ocamlgraph package [40]. Figure 8 shows the Analytics
Engine pipeline. The pipeline has five stages. We walk through each stage in detail in
the rest of this section.

4.1 Per-Thread Call Graph

As discussed in Sect. 3.3, Trin-Trin captures the dynamic call metadata on a per-
thread basis. This stage of the Analytics Engine pipeline reads this metadata and
generates corresponding call graphs for each thread. Figure 9 exemplifies per-thread
partial dynamic call graphs.

Next, we walk through the nomenclature of the annotation of nodes and edges using
Fig. 9c.

• Node Annotation It consists of a two element vector, where the first element cor-
responds to the call count and the second element corresponds to the coverage
of the function corresponding to the given node. The suffixes of the annotation
vectors in the nodes corresponding to the functions a and b denotes the thread
number. Hot nodes are colored in shades of red; the threshold for hotness can be
configured by the user.

• Edge Annotation Except for coloring, edge annotation is similar to node annota-
tion.
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a
<1, 0.00%>#1

<1, 39.67%>#1

<1, 39.67%>#1

START

<1, 0.00%>
libpthread.so.0:start_thread

(a)

beta
<1, 0.05%>#3

START

<1, 99.85%>#3

<1, 51.96%>#3
<1, 47.84%>#3

<1, 0.00%> L1
libpthread.so.0:start_thread

(b)

a
<1, 1.54%>#10

b

START

<1, 24.46%>#10

<1, 48.60%>#10

<1, 50.15%>#10

<1, 0.00%> L1
libpthread.so.0:start_thread

<1, 24.14%>#10

(c)

Fig. 9 Per-thread call graphs

A root node, called START, is introduced in each per-thread call graph. Except in
Thread #0, START is translated, during the merging stage of the Analytics Engine
(discussed in Sect. 4.2), to the function which spawned the given thread.

4.1.1 Handling Recursion

Let us revisit the example shown in Fig. 1. The call stack for the example is shown
in Fig. 11a. Given the aforementioned assumptions, we note that the following three
simple cycles exist (note that the first two form a complex cycle):

f oo → bar → f oo

f oo → toy → bar → f oo

toy → bar → toy

There are two backedges: bar → f oo and bar → toy. The backedges (colored
in purple) with their respective counts (annotated with rc =) are shown in the par-
tial call graph obtained via Trin-Trin in Fig. 11b. Now let us consider the scenario
wherein, using a sampling call graph extractor (such as vtssrun), samples are
collected at levels 2 and 5. The two samples will be able to detect only one cycle
( f oo → bar → f oo) in the call graph. In cases where a function is called in
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Fig. 10 An illustrative call
graph

bar

foo

<2, 4.88%>#0
rc=2

<3, 29.21%>#0
rc=2

foo

bar

toy

foo

bar

foo

toy

bar

toy

Level

1:

2:

3:

4:

5:

6:

7:

8:

9:

(a)

bar
<3, 0.02%>#0

foo

sleep
<9, 0.05%>#0

toy

<1, 11.03%>#0

<3, 33.12%>#0

<2, 55.13%>#0

<2, 22.05%>#0

<3, 33.06%>#0

rc=2

rc=1

<18, 0.02%>#0

<3, 0.02%>#0

<3, 0.02%>#0

<3, 33.06%>#0

(b)

Fig. 11 Revisiting example shown in Fig. 2

both recursive and non-recursive contexts, sampling can potentially mislead program
analysis.

For example, let us consider the partial call graph shown in Fig. 10. From the
figure we note that the edges f oo → bar and bar → f oo serve as both nor-
mal (signified by the edge vector) and back-edges (signified by rc =). In such
as scenario, sampling based approach may result in an higher call count corre-
sponding to the edge vector and correspondingly result in a smaller count for rc
(Fig. 11).
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Fig. 12 Trin-Trin thread map
file

a
<1, 0.00%>#1

foo
<0, 0.00%>

<1, 39.67%>#1

<1, 39.67%>#1

<1, 100.00%>

<1, 0.00%> L1
libpthread.so.0:start_thread

(a)

beta

<1, 99.85%>#3

foo
<0, 0.00%>

<1, 100.00%>

<1, 0.05%>#3

<1, 51.96%>#3
<1, 47.84%>#3

<1, 0.00%> L1
libpthread.so.0:start_thread

(b)

a
<1, 1.54%>#10

b
<1, 24.14%>#10

bar
<0, 0.00%>

<1, 100.00%>

<1, 50.15%>#10

<1, 48.60%>#10

<1, 24.46%>#10

<1, 0.00%> L1
libpthread.so.0:start_thread

(c)

Fig. 13 Augmented per-thread call graphs

4.2 Merging

Trin-Trin generates thread map files on a per-process basis. A sample thread map file
is shown in Fig. 12. Generated thread map files contains three fields for each spawned
thread, viz., ‘Parent Thread Id’, ‘Parent Function’ and ‘Child Thread Id’.

The Analytics Engine uses this information to merge the per-thread call graphs
(generated in the first stage of the Analytics Engine, refer to Sect. 4.1).

Specifically,

• The START node of a per-thread call graph is translated, using the thread map
information, to the function that spawned the thread under consideration, e.g., see
the per-thread call graphs shown in Fig. 13 (and compare them with the per-thread
call graphs shown in Fig. 9).

• Next, multiple invocations of a given function by different threads, if applicable,
are merged. Merging all the invocations of the first function executed by the dif-
ferent threads (start_thread in Fig. 9) may induce spurious cycles in the call
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graph. To avoid this, the set of nodes corresponding to the first function executed
by the different threads is partitioned into subsets based on the nesting level of the
different threads. The nodes in each subset are then merged.
In addition, the Analytics Engine can be configured to group threads based on
their ‘Parent Thread Id‘ or to avoid grouping, which will result in generation of
unique spawn site node(s) for each thread.

The first function executed by any thread, except Thread #0, is colored in brown color
to signify a thread spawning site in a composite dynamic call graph. Further, the creator
of a thread and the first function executed by a thread are linked by a green edge (see
Fig. 13). These green edges have an interesting property, they highlight the relative
execution time of spawned thread(s) compared to the execution time of the application
(aka., Thread #0). For e.g., in Fig. 14a the green edge connecting ‘foo’ to ‘start_thread‘
shows that the six spawned threads consumed wall time equivalent to ‘35.36 %’ of
total execution time. Using ‘Demand-Driven Context Extraction’ (Sect. 4.4) this infor-
mation can be obtained on a per thread basis as depicted in Fig. 14b.

Note that in the figure, a suffix is introduced to the annotation vector in the node
corresponding to the function start_thread. The suffix denotes the nesting of
multithreading.

The composite dynamic call graph corresponding to the per-thread call graphs
shown in Fig. 132 is illustrated in Fig. 14a. Observe that annotation vector of the
nodes corresponding to the functions a and beta has been extended to 3 elements.
The third element of the vector represents concurrency, i.e., how many unique threads
executed the function corresponding to the given node.

4.3 Pruning

This stage of the Analytics Engine facilitates pruning of nodes or edges with low cov-
erage. In addition, pruning of low level functions, starting with ‘__’ as illustrated in
Fig. 2a, in shared libraries such as libc is also supported. The user of Trin-Trin can
define the pruning filter by specifying a coverage threshold or via regular expressions.
Pruning of “unimportant” nodes/edges augments the readability of a call graph. This
is of particular importance in complex applications such as the Y! properties whose
call graphs comprise of >10K nodes.

Filtering of nodes may necessitate the creation of dfa edges, as exemplified in Fig. 2.
The different scenarios in which the pruning stage creates one or more dfa edges are
enumerated below:

(i) Pruning of nodes may lead to orphaning of nodes in the resulting call graph. The
orphaned nodes are then connected to their closest ancestor(s) via dfa edge(s).

(ii) Pruning of nodes may give rise to nodes with no child nodes. Such nodes are
connected with their grand-child nodes (in the unpruned call graph), if any, via
dfa edges.

2 Six other per-thread call graphs were not shown in Fig. 13 for clarity purposes.
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a
<6, 0.36%, 6>

beta
<3, 0.40%, 3>

foo
<1, 0.95%>#0

bar
<1, 0.88%>#0

<1, 3.93%>#0<1, 53.56%>#0

<3, 0.07%, 3><6, 35.36%, 6>

<6, 6.15%, 6> <3, 18.27%, 3>

<6, 5.79%, 6>
<3, 11.66%, 3>

<3, 0.72%, 3>

<3, 6.20%, 3>

<9, 0.00%, 9> L1
libpthread.so.0:start_thread

(a)

<6, 5.79%, 6> = 
<1, 4.64%>#1
<1, 1.04%>#2
<1, 0.09%>#4
<1, 0.02%>#10
<1, 0.01%>#11
<1, 0.01%>#12

<3, 0.72%, 3> = 
<1, 0.03%> 3 −−> 9
<1, 0.66%> 5 −−> 7
<1, 0.03%> 6 −−> 8

<3, 11.66%, 3> = 
<1, 5.03%>#3
<1, 3.35%>#5
<1, 3.28%>#6

<3, 18.27%, 3> = 
<1, 9.67%>#3
<1, 5.25%>#5
<1, 3.35%>#6

<6, 6.15%, 6> = 
<1, 4.64%>#1
<1, 1.39%>#2
<1, 0.09%>#4
<1, 0.02%>#10
<1, 0.01%>#11
<1, 0.01%>#12

a
<6, 0.36%, 6> = 

<1, 0.00%>#1
<1, 0.35%>#2
<1, 0.00%>#4
<1, 0.00%>#10
<1, 0.00%>#11
<1, 0.00%>#12

beta
<3, 0.40%, 3> = 

<1, 0.00%>#3
<1, 0.40%>#5

<3, 6.20%, 3> = 
<1, 4.63%>#3
<1, 1.50%>#5
<1, 0.07%>#6

foo
<1, 0.95%>#0

<6, 35.36%, 6> = 
<1, 11.69%> 0 −−> 1
<1, 4.99%> 0 −−> 2
<1, 9.68%> 0 −−> 3
<1, 0.35%> 0 −−> 4
<1, 5.28%> 0 −−> 5
<1, 3.37%> 0 −−> 6

bar
<1, 0.88%>#0

<1, 3.93%>#0

<3, 0.07%, 3> = 

<1, 0.00%>#6

<1, 53.56%>#0

<1, 0.03%> 0 −−> 10
<1, 0.02%> 0 −−> 11
<1, 0.02%> 0 −−> 12

<9, 0.00%, 9> L1
libpthread.so.0:start_thread

(b)

Fig. 14 Illustration of context extraction
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4.4 Demand-Driven Context Extraction

Let us consider the partial call graph shown in Fig. 14a. We note the following from
the figure: (a) functions foo and bar spawn 6 and 3 threads respectively and (b) the
callees offoo, bar are the functionsa (with a call count of 6) andbeta (with a call
count of 3). Using the partial call graph shown in Fig. 14a it is not possible to deter-
mine the caller–callee relationship between { foo, bar} and {a, beta} and the
corresponding call counts. The above information can potentially gear optimization
such as inlining and function versioning.

To this end, the Analytics Engine facilitates demand-driven context extraction. For
example, Fig. 14b details the thread context for the partial call graph shown in Fig. 14a.
Note that vector corresponding to the edge f oo → libpthread.so.0 : start_thread
is dissected into 6 thread-specific vectors. The notation 0 —> 1 signifies that Thread
#0 spawned Thread #1.

From the thread-specific vector inside the node corresponding to function a, we
note that Thread #1 executed function a. On further analysis, based on the context
information, one can conclude that the function beta was called only by function
foo, whereas the function a was called by both the functions foo and bar.

4.5 Summary Generator

In this stage, the Analytics Engine generates a summary of the dynamic call graph
extracted at run time. The summary comprises of metrics which characterizes the
dynamic call graph such as number of nodes, number of edges in the dynamic call
graph. Additionally, program properties such as number of direct and indirect calls,
hottest function, hottest edge, are reported. Additionally, the shared libraries used
by the application and their respective coverages are also reported. Summary for the
example shown in Fig. 2, obtained via Trin-Trin, is given in Fig. 15.

4.6 Discussion

In this subsection we discuss other salient features of the Analytics Engine which
assist program analysis and can potentially guide program optimization.

Fig. 15 Trin-Trin’s summary
for the example shown in Fig. 2

          Node Count: 9
          Edge Count: 13
        Normal Edges: 10
           DFA Edges: 3
        Thread Edges: 0
 Multi−threaded App.: No
         Cycle Count: 3
        Direct Calls: 36
Hot Node Information: [sleep] <9, 0.05%>#0
Hot Edge Information: main−>foo <1, 99.30%>#0
      Used Libraries: libc.so.6, 99.44%
                      ld−linux−x86−64.so.2, 0.12%
                      Example, 0.18%
                      libpthread.so.0, 0.25%
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Fig. 16 Edge-profiled call
graph for the example shown in
Fig. 1

foo
<3, 0.02%>#0

[sleep]
<9, 0.05%>#0

<3, 33.13%>#0

START
<0, 0.00%>

main
<1, 0.01%>#0

dfa(2)

<1, 99.30%>#0

4.6.1 Hot Node and Hot Path Analysis

As discussed in Sect. 4.3, the Analytics Engine generates ‘Node-profiled’ call graph,
i.e., it ranks nodes based on their coverages and then prunes the call graph using a
‘user-defined’ threshold. This combined with node coloring (as explained in Sect. 9)
enables the users of Trin-Trin to quickly drill-down on functions with the most bang-
for-the-buck from optimization standpoint.

The Analytics Engine also facilitates extraction of ‘Edge-profiled’ call graphs. In
this mode, during the Pruning stage, the nodes are ranked based on the coverage of
connecting edges. Edge-profiled call graphs highlight the hot paths in a given applica-
tion. Using a threshold of 10 %, the edge-profiled call graph for the example in Fig. 1 is
shown in Fig. 16. On comparing Figs. 11b and 16, we note that the latter corresponds
to the hottest path in the former!

4.6.2 Run Time Analysis

In client-server applications such as the Y! properties, threads may be idle for various
reasons such as, but not limited to, waiting to acquire a lock, I/O. In order to analyze the
run time behavior, it is important to quantify the amount of time being spent in functions
such as epoll_wait, pthread_cond_wait, pthread_cond_timed-
wait, sem_wait, ___lll_mutex_lock_wait andpread. This is not pos-
sible when using tools such as vtssrun as they capture CPU cycles in the user space.
In contrast, Trin-Trin reports the total wall clock time spent in such functions. We
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have successfully used Trin-Trin to quantify the wall clock time spent in boost and
pthread-based locking routines in Y! seach engine and other Y! properties.

5 Experiments

In this section, we present an evaluation of Trin-Trin’s run time overhead of Trin-Trin
using several Unix utilities, applications from the industry-standard SPEC CINT2006,
CFP2006 benchmark suite. Additionally, we illustrate, using real programs, how Trin-
Trin can be used to guide program optimization.

5.1 Setup

Table 1 lists the open-source applications and Yahoo! internal applications used in the
experiments. The configuration of the system used for running the applications listed
in Table 1 is given in Table 2.

5.2 Overhead and Dynamic Call Count Analysis

We dissect the run time overhead incurred, when running an application under the Pin
environment with Trin-Trin, into the following three categories:

• Standalone Pin overhead (Op): Measures the analysis and runtime overhead intro-
duced by the Pin environment. We measured this overhead by building a replica of
the Trin-Trin Pin tool that contained empty analysis routines. As a consequence
no instrumentation was insterted at runtime.

• Pin tracing overhead (Ot ): Measures the minimum analysis and runtime overhead
induced by Pin for a given application. We measured this overhead by tracing appli-
cations using an empty ‘Shared Library and Routine Filter’ (refer to Sect. 3.1),
causing Trin-Trin to not instrument any routines at runtime.

• Trin-Trin overhead (OTT): Measures the Trin-Trin overhead when tracing all
dynamic calls in an application.

• Trin-Trin with Min–Max overhead (OTTMM): Measures the run time overhead
introduced by enabling capture of minimum and maximum call coverage for each
instrumented edge. For this, conditionals expressions need to be added to Trin-
Trin’s default Pin instrumentation routines.

The aforementioned overheads for 64-bit SPEC CINT2006 and CFP2006 applica-
tions are shown in Fig. 17a. Excluding the outlier 483.xalancbmk, from the figure
we observe that the Pin environment introduces an average overhead of 29 %. Pin-
based tracing introduces an average overhead of 12 % and Trin-Trin introduces an
overhead on 141 % on an average. Also, from Fig. 17a we note that OT T varies sig-
nificantly (standard deviation of 179 %) across the different applications. To reason
this, we obtained the total dynamic call counts via Trin-Trin. Excluding the outlier,
we regressed OT T with respect to the total dynamic call count, see Fig. 18. From the
figure we conclude that the applications with high call count have high OT T .
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Table 1 Application suite
Benchmark # of instructions

Open source utilities

find (4.1.20) 10,412

gzip(1.3.3) 10,050

tar (1.14) 30,855

dd (5.21) 4,085

SPEC CINT2006

401.bzip2 123,628

403.gcc 1,085,855

429.mcf 99,281

445.gobmk 459,579

456.hmmer 171,340

458.sjeng 132,535

462.libquantum 149,719

464.h264avc 310,614

471.omnetpp 449,153

473.astar 132,218

483.xalancbmk 1,261,823

SPEC CFP2006

444.namd 198,937

447.dealII 894,761

450.soplex 317,300

453.povray 472,821

470.lbm 98,651

482.sphinx3 177,187

Y!

Y! search engine >4M

Table 2 Experimental setup
Processor Intel Xeon®CPU E5530, 2.40 GHz

Memory 2 GB

L1 D-cache 32 KB

L1 I-cache 32 KB

L2 cache 256 KB

L3 cache 8 MB

Intel QPI speed 5.86 GT/s

Compiler and flags icc (v 11.1)-fast

OS Linux 2.6.9-80.ELlargesmp #1 SMP

Table 3 lists the Pearson’s correlation [38,47] between overhead and dynamic call
count. From the table we note that each type of overhead has a high positive correlation
coefficient which implies that the overhead increases with an increase in dynamic call
count.
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Fig. 17 a Run time overhead, b dynamic call counts

High value of OT T in applications such as 403.gcc can, in part, be attributed
to the flat function coverage profile (see Fig. 4). In such cases, the overhead incurred
to profile a function may outweight the self-coverage of the function itself. In con-
trast, applications such as 470.lbm incur ∼ 1 % overhead as a single function in the
application has a coverage of >95 %.

Excluding the outlier483.xalancbmk, we note that a higher Op, Ot corresponds
to a higher value of OT T . This evidenced from the overhead correlation matrix shown
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Fig. 18 Regression between dynamic call count and total overhead

Table 3 Correlation between
overhead and dynamic call count

Op Ot OT T

Including 483.xalancbmk 0.90 0.87 0.59

Excluding 483.xalancbmk 0.89 0.88 0.76

Table 4 Overhead correlation
matrix

Op Ot OT T

Op x 0.878 0.7

Ot x 0.906

OT T x

in Table 4. For instance, the correlation coefficient between Ot and OT T is 0.906
which implies that the two metrics are highly correlated.

The dissection of the total dynamic call count into direct calls and indirect calls is
shown in Fig. 17b. The dynamic call count captured by Trin-Trin, on a per function
basis, has twofold benefits:

(i) It helps to determine the coverage per call of a given function. This is of para-
mount importance when making the decision whether to optimize a given func-
tion or to address minimization of calls to the function. The latter is preferred
when coverage per call is very low.

(ii) The dissection of call count into direct and indirect calls can also guide program
optimization. For example, a high percentage of indirect calls, as in 483.xa-
lancbmk (see Fig. 17b), suggests the conversion of virtual functions to con-
crete functions may yield better performance.

For the open source applications find, gzip and tar we used the FreeBSD 8.1
Ports Distribution (available from [17]) as the input. Specifically, we extracted the
ports tar-gz file in 5 different directories and used these directories as input to tar and
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Table 5 Overhead for Linux
utilities

Op Ot OT T

find 14.89 0.95 6.44

gzip 14.60 7.19 113.85

tar 17.79 2.92 3.31

dd 0.74 0.01 0.03

find applications (viz. ‘tar -cf ports.tar ports ports-2 ports-3
ports-4 ports-5’ and ‘find ports ports-2 ports-3 ports-4
ports-5 -name “nonexistent”’). For the gzip test we concatenated the de-
compressed ports tar file five times to create the input data set and benchmarked
gzip execution by compressing this data set. We benchmarked dd using the following
command:

/bin/ddif = /dev/sdbof = /dev/null bs = 65536 count = 409600

The overhead observed for these utilities is tabulated in Table 5. Note that the total
overhead observed in the case of dd was less than 1 %.

In light of the fact that Pin is 3.3× faster than valgrind (showed by Luk et al.
in [31]) and the fact that Callgrind is based on valgrind, the overhead incurred
by Trin-Trin is substantially lower than Callgrind.

5.2.1 Trade-Off Between Overhead and Precision

As mentioned earlier, Trin-Trin enables capture of minimum and maximum call
durations for each instrumented edge. This induces additional overhead, as tabulated
in Table 6. The results in the table suggest that the addition of trivial calculations
such as min and max can cause a significant overhead. For example, (OTTMM) for
401.bzip2 is approximately 6 % higher than the (OTT).

The coverage of a function may vary across different calls owing to a different
control flow in the different calls. Trin-Trin facilitates capturing of an outlier. In case
there exists an outlier, the corresponding function can be versioned [18]. This can
in turn potentially guide function inlining if the coverage of the calls other than the
outlier is low.

One common feedback from various teams at Yahoo! was to evaluate the impact of
Trin-Trin’s overhead on the ordering of hot functions (a skew in the ordering of the
hot functions would misguide the performance optimization efforts). For example, the
Hadoop team [25] queried the impact of the overhead of Trin-Trin on the ordering
of hotness of bzip2 which is used for compressing output streams [44] and de-com-
pressing input streams [43]. To this end, we computed the Spearman’s correlation
[52,53] coefficient (ρ) between the top 15 hot functions reported by Trin-Trin and
Intel’s PTU [26] for 401.bzip2 [57], see Table 7, using the five data sets of the
reference input.
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Table 6 Trade-off between
overhead and precision

Benchmark Overhead (%)

Without Min–Max With Min–Max
(OTT) (OTTMM)

401.bzip2 114 121

403.gcc 362 368

429.mcf 16 16

444.namd 16 16

447.dealII 443 460

450.soplex 19 19

453.povray 640 667

456.hmmer 31 33

458.sjeng 389 400

462.libquantum 3 3

464.h264ref 182 187

470.lbm 6 6

471.omnetpp 400 405

473.astar 14 45

482.sphinx3 44 45

483.xalancbmk 1,671 1,680

Table 7 Spearman’s correlation
for 401.bzip2 [57]

Spearman’s ρ

401.bzip2-1 0.927

401.bzip2-2 0.938

401.bzip2-3 0.862

401.bzip2-4 0.924

401.bzip2-5 0.928

The high value of Spearman’s ρ highlights that Trin-Trin’s overhead does not skew
the ordering of the hot functions in a significant fashion.

5.3 Case Study: Identifying Peformance Bottlenecks

As mentioned earlier, function coverage reported by existing tools such as Call-
grind [8] is based on CPU cycles instead of the wall clock time/run time. This limits
identification of performance bottlenecks in applications such as MySQL [37] where
disk access account for a large percentage of the run time. The following describes
how Trin-Trin was used to diagnose a performance bottleneck in one of the Yahoo!
properties which uses MySQL at the back end.
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Fig. 19 Partial call graph,
obtained via Trin-Trin,
highlighting the hottest function
in MySQL

Table 8 Reduction in 95th and
99th percentiles for read and
write latencies

% Reduction

Read latency Write latency

95th percentile 99th percentile 95th percentile 99th percentile

611 % 66 % 105 % 47 %

Table 9 Reduction in 95th and
99th percentiles for GETs

% Reduction

95th percentile 99th percentile

31 % 191 %

We profiled MySQL using Trin-Trin. A partial graph highlighting the hottest func-
tion is shown in Fig. 19. From the call graph we learned that heavy disk I/O was the
primary cause of high latency of the Yahoo! property. This guided the team to address
optimization of InnoDB disk I/O [42].

In addition, to mitigate the impact of disk I/O on latency, we tuned the Apache
configuration. Specifically, we decreased the number of Apache worker processes and
increased the value of the backlog parameter so as to maintain the simultaneous
connection handling capacity. The decrease in 95th and 99th percentiles for read and
write latencies are reported in Table 8.

Lastly, the performance of GETs for the Yahoo! property was improved by extend-
ing the MySQL queries using a where clause. The performance improvements for
gets is reported in Table 9.

5.4 Case Study: Peformance Regression Analysis

In a production setting, it is not uncommon that 32-bit binaries are run on 64-bit sys-
tems. The switch to a 64-bit binary can potentially result in a performance regression.
Table 10 lists the regression we observed for four applications in SPEC CPU2006
when switching from a 32-bit binary to a 64-bit binary.

Trin-Trin can assist to diagnose the above with respect to the impact on dynamic
call counts. Figure 20 shows the difference in the total dynamic call count between
the 32- and 64-bit runs. Observe that the total dynamic call count increased for four
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Table 10 Performance
degradation when using 64-bit
binary

% Degradation

403.gcc 22.93

429.mcf 14.05

450.soplex 1.45

471.omnetpp 15.29

Fig. 20 Dynamic call count of 32-bit and 64-bit binaries

applications, such as 450.soplex, in the 64-bit case. This can potentially guide a
compiler writer and/or a performance enginner to tune the cost model which drives
function inlining. For example, Fig. 21a, b, obtained via Trin-Trin, illustrate the
difference in inlining of the functions primal_bea_mpp and update_tree in
32-bit and 64-bit cases. Note that the call count of the incoming edge to the node
corresponding to the function sort_basket is consistent in both the cases.

It is well known that aggressive inlining can potentially result in performance degra-
dation. In order to address whether aggressive inlining is the cause for the performance
degradation in the 64-bit case for 429.mcf (reported in Table 10), we disabled the in-
lining of the function primal_bea_mpp via __attribute__((noinline)).
Figure 22b shows the partial call graph obtained subsequently. We observed that dis-
abling inlining as mentioned above did not alleviate the performance degradation with
respect to the 32-bit case.

To analyze the performance degradation further, we turned on the feature of Trin-
Trin whereby the absolute time is included in the node and edge annotation vec-
tors. From Fig. 22a, b, we note that the time spent in primal_bea_mpp in the
32-bit and 64-bit cases are in the same ballpark; on the other hand, the time spent in
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mcf:update_tree
<7224533, 3.19%>#0

mcf:primal_bea_mpp
<7224539, 42.48%>#0

mcf:sort_basket
<148797607, 9.26%>#0

<12980895, 9.26%>#0

mcf:primal_net_simplex
<6, 22.34%>#0

<7224533, 3.19%>#0 <7224539, 51.73%>#0

<6, 77.27%>#0

rc=135816712

(a)

mcf:sort_basket
<148797607, 8.01%>#0 rc=135816712

mcf:primal_net_simplex
<6, 69.15%>#0

<6, 77.16%>#0

<12980895, 8.01%>#0

(b)

Fig. 21 Difference in inlining in a 32-bit and b 64-bit binaries

Table 11 Performance
degradation of hottest functions
in 429.mcf

Compiler % Degradation: 64-bit w.r.t. 32-bit

Primal_bea_mpp Refresh_potential

icc (no ipo) 18.74 90.39

gcc (-O3) 16.78 99.51

primal_net_simplex is 50.4 % higher in the 64-bit case as compared to the 32-
bit case. We observed a similar performance degradation when gcc v.3.4.6 was used
to generate the 32- and 64-bit binaries. Using Trin-Trin, we identified the primary
sources of the performance degradation for the top two hottest functions (highlighted
in shades of red by of Trin-Trin) 429.mcf. Table 11 reports the percentage degrada-
tion when 429.mcfwas compiled with Intel’s icc (with interprocedural optimization
(ipo) disabled) and gcc.

Given that the partial call graphs shown in Fig. 22 have the same structure with
respect to caller–callee relationships, the performance degradation is indicative of
inefficient code generation in the 64-bit case.

As another case study, we used Trin-Trin to reason the performance regression
(=12 %) observed with the 32-bit binary of 473.astar. Analysis of the call graphs,
extracted via Trin-Trin, corresponding to the 32-bit and 64-bit binaries highlighted
that the hot function releasepoint was not inlined in the 32-bit case. In light
of this, we inlined the function releasepoint which alleviated the performance
regression mentioned above.

6 Previous Work

In this section, we present an overview of related work. Several tools such as cscope
[12] and doxygen [14] are available for code browsing and analysis. For exam-
ple, cscope can be used to determine the caller–callee caller–callee relationship
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mcf:update_tree
<7224533, 26.087179s, 3.19%>#0

mcf:primal_bea_mpp
<7224539, 346.926853s, 42.48%>#0

mcf:sort_basket
<148797607, 75.599326s, 9.26%>#0

<12980895, 75.599326s, 9.26%>#0

mcf:primal_net_simplex
<6, 182.446846s, 22.34%>#0

<7224533, 26.087179s, 3.19%>#0<7224539, 422.526179s, 51.73%>#0

<6, 631.060204s, 77.27%>#0

rc=135816712

(a)

mcf:update_tree
<7224533, 37.896430s, 4.00%>#0

mcf:primal_net_simplex
<6, 274.479298s, 28.99%>#0

<6, 735.725727s, 77.70%>#0

<148797607, 75.331317s, 7.96%>#0 rc=135816712

mcf:primal_bea_mpp
<7224539, 348.018682s, 36.76%>#0

<7224533, 37.896430s, 4.00%>#0 <7224539, 423.349999s, 44.71%>#0

mcf:sort_basket

<12980895, 75.331317s, 7.96%>#0

(b)

Fig. 22 Comparing absolute times. a 32-bit, b 64-bit

between the different functions in a C code base. The relationships are established
pre-compile time and hence cscope cannot detect the dynamic (e.g., in presence of
virtual function calls) caller–callee relationships. In [13], Demme and Sethumadhavan
highlighted the importance of precise profiling, using hardware peformance counters,
on analyzing production software such as MySQL [37] and Firefox [16].

In [54], Spinellis presented a tool,CScout, for source code analysis of C programs.
A web-based user interface is provided in the front-end for source code navigation and
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an sql-based back-end is provided for more complex source code analysis and manipu-
lation. Recent work from Tallent and Mellor-Crummey [59] is centered around assess-
ing the extent of parallel idleness and parallel overhead in multithreaded applications.
On the other hand, as discussed earlier in the paper, Trin-Trin exposes the context
information to guide optimization of multithreaded applications. Thus, Trin-Trin is
complementary to the work presented by Tallent and Mellor-Crummey.

6.1 Static Call Graph Extractors

Several static call graph extractors have been proposed in the past. For example,
rigiparse [35], CIA [9], cawk [21], Field [48] and cflow—this tool is dis-
tributed with some UNIX systems.

In [36], Murphy et al. presented an empirical study of nine static call graph extrac-
tors. Their qualitative analysis shows that there is large variation in the call graphs
extracted using different static call graph extractors. The variation can, in part, be
ascribed to differing treatments of macros, function pointers, input formats et cetera.

Milanova et al. [33] presented an approach to generate precise call graphs in the
presence of function pointers. Unlike dynamic call graphs, the precision of static call
graphs is subject to the precision of the pointer analysis algorithm used for disambigu-
ation. Milanova et al. used a flow- and context-insensitive pointer analysis algorithm;
hence, the calling context of functions invoked in a multithreaded scenario cannot be
captured using their approach.

Tip and Palsberg proposed scalable propagation-based call graph construction algo-
rithms in [61]. They investigate the design space between the RTA [4] and 0-CFA
[51] algorithms3 while constructing propagation-based call graphs. In [22], Grove
and Chambers presented a framework for understanding call graph construction algo-
rithms. Cross-algorithm performance comparisons can also be performed using the
framework. Unlike Trin-Trin, the call graphs are generated at compile time in Grove
and Chambers’ framework. Recently, Zhang and Ryder [64] explored approaches for
generating application call graphs for Java. They proposed a data reachability algo-
rithm to resolve library callbacks accurately and showed that the algorithm reports
fewer number of spurious callback edges in a static call graph. Lhotak [30] presented
a tool for comparing call graphs. The call graph difference search tool ranks the call
graph edges by their likelihood of causing large differences in the call graphs.

6.2 Production/Open Source Tools

Graham et al. [19] presented Gprof—a profiler which reports the running time of
called routines and the running time of the routines that call them. Unlike Trin-Trin,
gprof requires the application to be compiled with -pg option. This is typically
not feasible in a production scenario. Further, akin to vtssrun, gprof does not
support call graph extraction of already running applications. Eustace and Srivastava

3 These algorithms are used to approximate run-time values of expressions. A key property of these algo-
rithms is that they do not analyze values on the run-time stack.
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[15] presented a tool for code instrumentation, called ATOM. Unlike Pin, ATOM is not
capable of dynamically injecting instrumentation into a running executable.
vtssrun [27] is a tool (from Intel) for statistical call graph data collection. Spe-

cifically, it employs statistical sampling to capture the call stack. The latest version of
vtssrun (version 3.2, Update 1, build 8240 of the Intel Performance Tuning Utility)
has the following limitations:
• The target application is required to be run under the vtssrun envelope. This is

severely limiting in a production scenario. To this end, Trin-Trin enables extrac-
tion of dynamic call graph of an already running application. Trin-Trin uses Pin’s
APIs to attach and detach to/from an already running process [31].

• vtssrun lacks analytics support for program analysis.
• It does not provide a graphical interface to view a dynamic call graph.

Oprofile [41] supports call graph profiling similar to vtssrun and has similar
limitations.

The framework presented in this paper is similar to the tool Callgrind [8].
Callgrind is based on valgrind [62]. The call graph profile data dumped by
Callgrind can be viewed graphically using KCachegrind [28]. In [6], Bruen-
ing presented a dynamic instrumentation tool DynamoRIO. Unlike valgrind and
DynamoRIO, Pin supports register allocation, inlining, liveness analysis and instruc-
tion scheduling to optimize jitted code.

6.3 Pin-based Tools

Several Pin-based program analysis tools have been proposed. In this section we
overview these tools and highlight how they differ from Trin-Trin. In [34], Moseley
et al. presented an approach for loop-centric profiling. The profiling is done using a
Pin-based tool. A hierarchical view of how much time is spent in a given loop and the
loops nested within it is provided. Stube et al. [55] provide Pin-based software probes
for machine characterization and application performance prediction. Patil et al. [46]
present a Pin-based framework—PinPlay—for deterministic replay and reproducible
analysis of parallel programs. In [3], Bach et al. detail how Pin can be used to analyze
parallel programs. None of the aforementioned Pin-based tools are geared towards the
extraction of dynamic call graphs. From a program analysis standpoint, we believe
Trin-Trin is complementary to the existing Pin-based tools.

7 Conclusion

In this paper, we presented a Pin-based framework called Trin-Trin for extraction
of complete, precise and dynamic call graphs. Trin-Trin can be used not only for
sequential, but also for multithreaded and multi-process applications. A key highlight
of Trin-Trin is that it can be used to extract dynamic call graphs of already running
applications. This is of particular importance as applications in production cannot be
restarted. The framework includes an analytics engine to assist a developer and/or a
performance engineer. The analytics engine can be used to determine, for example,
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hottest path in a call graph, existence of cycles in a call graph, depth of recursion,
levels of multithreading, enables demand-driven context extraction et cetera. In addi-
tion, the analytics engine supports graphical visualization of dynamic call graphs
wherein nodes and edges are annotated with call metadata. The analytics engine is
run post-collection of the call graph profile data; hence, the analytic engine does not
introduce any run time overhead. We quantified the run time overhead incurred due
to the Pin environment, due to Pin tracing and the overhead induced by Trin-Trin.
Lastly, we presented a case study to illustrate how Trin-Trin can be used to analyze
performance regressions. We have been using Trin-Trin for analysis of the run time
performance of multiple Yahoo! properties such as the Y! the advertising platform.
Recently, we extended support for extraction of dynamic call-graphs of Java based
applications. Thus, use of Trin-Trin is not limited to C/C++ applications (unlike the
tools mentioned in Sect. 6).

As future work, we plan to provide sampling support, configurable on a per-func-
tion basis, in Trin-Trin. In particular, the sampling mode would be set on-the-fly
in order depending on, say, the hotness of the function. Another area of exploration
will be Out-of-Band profiling. In this, we plan to limit the capture of metadata by
Pin-analysis routines. Specifically, the run time information will be relegated to a sep-
arate process which would then generate ‘Call Metadata’ in its own context thereby
reducing overhead in the application.

Lastly, we plan to investigate, using Trin-Trin, performance bottlenecks owing to
synchronization placement [39] and memory bottlenecks [23,45] in open source and
production software.
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